A Multi-model Combination Approach for Probabilistic Wind Power Forecasting

نویسندگان

  • You Lin
  • Ming Yang
  • Can Wan
  • Jianhui Wang
  • Yong-Hua Song
چکیده

 Abstract—Short-term probabilistic wind power forecasting can provide critical quantified uncertainty information of wind generation for power system operation and control. As the complicated characteristics of wind power prediction error, it would be difficult to develop a universal forecasting model dominating over other alternative models. Therefore, a novel multi-model combination (MMC) approach for short-term probabilistic wind generation forecasting is proposed in this paper to exploit the advantages of different forecasting models. The proposed approach can combine different forecasting models those provide different kinds of probability density functions to improve the probabilistic forecast accuracy. Three probabilistic forecasting models based on the sparse Bayesian learning, kernel density estimation and beta distribution fitting are used to form the combined model. The parameters of the MMC model are solved based on Bayesian framework. Numerical tests illustrate the effectiveness of the proposed MMC approach.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Multi-Objective Economic Load Dispatch Considering Accessibility of Wind Power with Here-And-Now Approach

The major problem of wind turbines is the great variability of wind power production. The dynamic change of the wind speed returns the quantity of the power injected to networks. Therefore, wind–thermal generation scheduling problem plays a key role to implement clean power producers in a competitive environment. In deregulated power systems, the scheduling problem has various objectives than i...

متن کامل

Optimal Locating and Sizing of Unified Power Quality Conditioner- phase Angle Control for Reactive Power Compensation in Radial Distribution Network with Wind Generation

In this article, a multi-objective planning is demonstrated for reactive power compensation in radial distribution networks with wind generation via unified power quality conditioner (UPQC). UPQC model, based on phase angle control (PAC), is used. In presented method, optimal locating of UPQC-PAC is done by simultaneous minimizing of objective functions such as: grid power loss, percentage of n...

متن کامل

Loss Reduction in a Probabilistic Approach for Optimal Planning of Renewable Resources

Clean and sustainable renewable energy technology is going to take responsibility of energy supply in electrical power systems. Using renewable sources improve the environment and reduce dependence on oil and other fossil fuels. In distribution power system, utilizing of wind and solar DGs comprises some advantages; consist of loss and emission reduction, and also improvement of voltage profile...

متن کامل

A new approach to wind turbine power generation forecasting, using weather radar data based on Hidden Markov Model

The wind is one of the most important and affecting phenomena and is known as one of the significant clean resources of energy. Apart from other atmospheric parameters, the wind has complex behavior and intermittent characteristics. Local phenomena can be accompanied by the wind, which is strong, non-predicted, and damaging.  Weather radars are capable of detecting and displaying storm-related ...

متن کامل

Probabilistic Optimal Operation of a Smart Grid Including Wind Power Generator Units

This paper presents a probabilistic optimal power flow (POPF) algorithm considering different uncertainties in a smart grid. Different uncertainties such as variation of nodal load, change in system configuration, measuring errors, forecasting errors, and etc. can be considered in the proposed algorithm. By increasing the penetration of the renewable energies in power systems, it is more essent...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1702.03613  شماره 

صفحات  -

تاریخ انتشار 2017